Расчеты в Lira, SCad, Мономах

Расчет металлической колонны

Расчет металлической колонны

Расчет металлической колонныМеталлические центрально сжатые колонны применяются для поддерживания междуэтажных перекрытий и покрытий зданий, в рабочих площадках, эстакадах и др.

Колонны передают нагрузку от выше лежащей конструкции на фундамент. Расчетная схема одноярусной колонны определяется с учетом способа закрепления ее в фундамент, а также способа прикрепления балок, передающих нагрузку на колонну.

Расчетная длина колонны определяется по формуле:

lef = μ*l

где, μ — коэффициент расчетной длины, применяемый в зависимости от закрепления стержня.

коэффициент расчетной длины

При шарнирном креплении колонны сверху и внизу μ = 1.

Колонны могут быть два типа: сплошные и сквозные.

Максимально возможная расчетная нагрузка для сквозных колонн из двух швеллеров достигает 2700…3600 кН, для колонн из двутавров — 5500…6000 кН.

При значительных нагрузках сквозные колонны получаются сложными в изготовлении, более рациональными оказываются сплошные колонны, которые проектируются в виде широкополочного двутавра (прокатного или сварного).

В данном примере рассмотрим расчет сквозной колонны, сечение которого составлено из двух швеллеров.

Расчет металлической колонны относительно оси Х-Х

Подбор сечения колонны начинаем с определения требуемой площади поперечного сечения колонны по формуле:

Требуемая площадь поперечного сечения колонны

где, N — расчетная нагрузка на колонну, передаваемая балками;

φ — коэффициент продольного изгиба;

Ry = 24 кН/см2 — расчетное сопротивление стали;

γc — коэффициент условной работы, принимается по табл.1

Коэф. условия работы

Табл. 1 Коэффициент условной работы γc

Так как на колонну опирается две главные балки, то N = 2Qmax

где, Qmax — реакция главной балки.

Коэф. φ принимаем по табл.2 в зависимости от предварительно заданной гибкости стержня колонны λs, которая назначается для сквозные колонн с нагрузкой:

  • до 1500 кН — λs = 90…60;
  • с нагрузкой до 3000 кН — λs = 60…40;
  • для сплошных колонн с нагрузкой до 2500 кН — λs = 100…70;
  • с нагрузкой до 4000 кН — λs = 70…50
Коэффициенты устойчивости при центральном сжатии

Табл. 2 Коэффициенты устойчивости при центральном сжатии φ

Задаемся гибкостью λ= 70, при этом φ = 0,754

Требуемая площадь сечения:

Требуемая площадь сечения

Требуемый радиус инерции сечения:

Требуемый радиус инерции сечения

По требуемой площади сечения и радиусу инерции подбиаем по сортаменту соответствующий прокатный профиль, выписываем действительные характеристики принятого сечения h, Jx, Jy0, ix, iy, z0 для сечения, составленного из двух швеллеров (Рис.3 а) или для двух двутавров (Рис.3 б).

Типы сечения сквозных колонн

Рис. 1 Типы сечения сквозных колонн а — сечение из двух швеллеров б — сечение из двух двутавров

По Aтр = 57,37 см2 и ix,тр = 11,3 см по сортаменту принимаем два швеллера №27

Тогда А = 2*35,2 = 70,4 см2, ix = 10.9 см

Рассчитываем гибкость колонны:

Рассчитываем гибкость колонны

По табл. 2 в зависимости от λx = 72.48 определяем коэффициент продольного изгиба φ = 0,737

Проверяем устойчивость стержня колонны по формуле:

Проверяем устойчивость стержня колонны

Перенапряжение не допускается, недонапряжение допускается не более 5 %.

Принимаем сечение. составленное из двух швеллеров №27 на планках.

Расчет металлической колонны относительно оси Y-Y

Определяем расстояние между ветвями колонны из условия равноустойчивости:

λпр = λх

где, λпр — приведенная гибкость относительно оси Y-Y;  λх — гибкость относительно оси Х-Х.

Задаемся гибкостью ветви на участке между планками от 30 до 40. Для рядовых планок равна:

ls = (0.5…0.8)b

где b — ширина сечения сквозной колонны;

Концевые планки принимаются длиной, равной примерно 1,5ls.

Толщина планок назначается из конструктивны условий ts = (1/10…1/25) ls в пределах 6…12 мм. Рис. 2

Схема расположения планок в колонне

Рис. 2 Схема расположения планок в колонне

Ширина сечения сквозной колонны равна:

b ≥ 2*bшв + a

где bшв — ширина пояса швеллера, а — 100…150 мм из конструктивных соображений.

b ≥ 2*95 + 100 ≈ 300 мм

Тогда

ls = 0.7*b = 0.7*300 ≈ 200 мм, ts = 8 мм.

Максимальное расстояние между планками l0 определяется по принятой гибкости λ1:

l0 = λ1 * i1

где  λ1 = 30 — гибкость на участке между планками; i = 2,73 см — радиус инерции швеллера №27, i1 = iy;

l0 = 30*2.73 = 82 см

Тогда, расчетная длина ветви равна:

lв = l0 + ls

lв = 82+20 = 102 см

Значение lв принимаем кратным высоте колонны.

Вычисляем соотношение:

Вычисляем соотношение

где Jпл — момент инерции площади поперечного сечения планки;

J1 = 262 см4 — момент инерции сечения швеллера №27;

J1 = Jy

Вычисляем гибкость стержня колонны λy. При n > 5 имеем:

Вычисляем гибкость стержня колонны λy

В колоннах с раскосной решеткой (рис.3) имеем:

где  — коэф., зависящий от угла наклона раскоса;

A – площадь сечения всего стержня колонны;
Ap – площадь сечения раскосов в двух плоскостях.

Схема узла раскосной решетки

Рис. 3 Схема узла раскосной решетки

При n < 5 имеем:

Гибкость При n < 5

При λ1 = 30 — гибкость ветви (задаем в пределах 30…40);

n — соотношение жесткостей;

γ1 — угол перекоса;

Угол перекоса γ1 определяем по формуле:

Угол перекоса γ1

где Δp —  удлинение раскоса (Рис.3).

При λy определяется радиус инерции сечения стержня колонны

радиус инерции сечения стержня колонны

где Jy — момент инерции сечения стержня колонны;

момент инерции сечения стержня колонны

Требуемая ширина сечения равна:

Требуемая ширина сечения

Полученное значение меньше b = 300 мм, следовательно, принимаем b = 30 см.

Определяем гибкость стержня колонны относительно свободной оси:

гибкость стержня колонны относительно свободной оси

Тогда получаем:

Если λпр = λх, то напряжение можно не проверять, колонна устойчива в двух плоскостях.

Если значение λпр отличается от λх, то необходима проверка устойчивости стержня колонны по формуле:

проверка устойчивости стержня колонны

где φy — коэф. принимаем по табл.2 в зависимости от λy.

Расчет планок

Расчет планок сквозной колонны сводится к назначению их размеров и расчету их прикрепления к ветвям.

Расчет планок проводится на условную поперечную силу Qусл:

Qусл  = 0,26 A

где А — площадь поперечного сечения стержня колонны.

Qусл  = 0,26*70,4 = 18,3 кН

Поперечная сила, приходящаяся на планку одной грани, равна:

Qпл = Qусл / 2

Qпл = 18,3 / 2 = 9,15 кН

Определяем изгибающий момент и поперечную силу в месте прикрепления планки:

изгибающий момент и поперечная сила в месте прикрепления планки

Принимается приварка планок к полкам швеллера угловыми швами с катетом шва kш = 0,7 см.

Тогда прочность по металлу шва, равна:

прочность по металлу шва

меньше прочности по металлу границы сплавления, равной

прочности по металлу границы сплавления

Следовательно, необходима проверка по металлу шва.

Для проверки определяется площадь сварного шва:

площадь сварного шва

где, lш = ls = 20 см — момент сопротивления шва.

момент сопротивления шва

Определяем напряжение в шве от момента и поперечной силы:

 

 

напряжение в шве от момента и поперечной силы

Прочность шва определяем по равнодействующему напряжению:

Прочность шва

Если проверка не выполняется, необходимо увеличить катет шва kш и сделать перерасчет.

 

Смотрите также: Расчет крепления консоли к металлической колонне

p.s.: Если у вас есть знакомые которые ищут расчет строительных конструкций в программе Lira (Лира), Мономах, SCad  поделитесь этой статьей в социальных сетях и тем самым поможете им.

Заказать расчет конструкций

Поделиться

Similar posts

Пока нет комментариев

Добавить комментарий

Поддержать проект

1

Архивы